
APPLET BASICSAPPLET BASICSAPPLET BASICS

• Two Types of Applets
• It is important to state at the outset that there are two varieties of applets. • It is important to state at the outset that there are two varieties of applets.
• The first are those based directly on the Applet class . These applets use

the Abstract Window Toolkit (AWT) to provide the graphic user interface
(or use no GUI at all).(or use no GUI at all).

• This style of applet has been available since Java was first created.
• The second type of applets are those based on the Swing class JApplet.
• Swing applets use the Swing classes to provide the GUI.
• Swing offers a richer and often easier-to-use user interface than does the

AWT. Thus, Swing-based applets are now the most popular. AWT. Thus, Swing-based applets are now the most popular.
• However, traditional AWT-based applets are still used, especially when

only a very simple user interface is required.
• Thus, both AWT- and Swing-based applets are valid.• Thus, both AWT- and Swing-based applets are valid.

Applet Basics
All applets are subclasses (either directly or indirectly) of Applet. All applets are subclasses (either directly or indirectly) of Applet.
Applets are not stand-alone programs. Instead, they run within
either a web browser or an applet viewer.
appletviewer, provided by the JDK. But you can use any applet appletviewer, provided by the JDK. But you can use any applet
viewer or browser you like.
Execution of an applet does not begin at main(). Actually, few Execution of an applet does not begin at main(). Actually, few
applets even have main() methods. Instead, execution of an
applet is started and controlled with an entirely different
mechanism, which will be explained shortly. Output to your mechanism, which will be explained shortly. Output to your
applet’s window is not performed by System.out.println().
Rather, in non-Swing applets, output is handled with various
AWT methods, such as drawString(), which outputs a string to a
specified X,Y location. Input is also handled differently than in a
console application.console application.

To use an applet, it is specified in an HTMLfile. One way to do
this is by using the APPLET tag. The applet will be executed by a this is by using the APPLET tag. The applet will be executed by a
Java-enabled web browser when it encounters the APPLET tag
within the HTML file. To view and test an appletwithin the HTML file. To view and test an applet
more conveniently, simply include a comment at the head of your
Java source code file that contains the APPLET tag. This way,
your code is documented with the necessary HTML statements your code is documented with the necessary HTML statements
needed by your applet, and you can test the compiled applet by
starting the appletstarting the applet
viewer with your Java source code file specified as the target.
Here is an example of such a comment:
/*/*
<applet code="MyApplet" width=200 height=60>
</applet>*/</applet>*/

The Applet ClassThe Applet Class
The Applet class defines some methods. Applet
provides all necessary support for applet provides all necessary support for applet
execution, such as starting and stopping. It also
provides methods that load and display images, provides methods that load and display images,
and methods that load and play audio clips.
Applet extends the AWT class Panel. In turn, Applet extends the AWT class Panel. In turn,
Panel extends Container, which extends
Component. These classes provide support for Component. These classes provide support for
Java’s window-based, graphical interface. Thus,
Applet provides all of the necessary support for Applet provides all of the necessary support for
window-based activities

Method Description
void destroy() Called by the browser just before an void destroy() Called by the browser just before an
applet is terminated. Your applet will override this
method if it needs to perform any cleanup prior to its method if it needs to perform any cleanup prior to its
destruction.
AccessibleContext -getAccessibleContext()- Returns AccessibleContext -getAccessibleContext()- Returns
the accessibility context for the invoking object.
AppletContext getAppletContext()- Returns the AppletContext getAppletContext()- Returns the
context associated with the applet.
String getAppletInfo() Returns a string that describes String getAppletInfo() Returns a string that describes
the applet.
AudioClip getAudioClip(URL url) Returns an
AudioClip object that encapsulates the audio clip found
at the location specified by url.

Method Description
AudioClip getAudioClip(URL url,String clipName)-Returns AudioClip getAudioClip(URL url,String clipName)-Returns
an AudioClip object that encapsulates the audio clip found at the
location specified by url and having the name specified by
clipName.clipName.
URL getCodeBase() -Returns the URL associated with the
invoking applet.invoking applet.
URL getDocumentBase() -Returns the URL of the HTML
document that invokes the applet.
Image getImage(URL url) -Returns an Image object that
encapsulates the image found at the location specified by url.
Image getImage(URL url,String imageName)-Returns an Image getImage(URL url,String imageName)-Returns an
Image object that encapsulates the image found at the location
specified by url and having the name specified by imageName.
Locale getLocale()- Returns a Locale object that is used by
various localesensitive classes and methods.

String getParameter(String paramName)- Returns the parameter
associated with paramName .null is returned if the specified parameter associated with paramName .null is returned if the specified parameter
is not found.
String[] [] getParameterInfo()- Returns a String table that describes
the parameters recognized by the applet. Each entry in the table must the parameters recognized by the applet. Each entry in the table must
consist of three strings that contain the name of the parameter, a
description of its type and/or range, and an explanation of its purpose.
void init() Called when an applet begins execution. It is the first
method called for any applet.
boolean isActive() Returns true if the applet has been started. It boolean isActive() Returns true if the applet has been started. It
returns false if the applet has been stopped.
static final AudioClip newAudioClip(URL url)- Returns an
AudioClip object that encapsulates the audio clip found at the location AudioClip object that encapsulates the audio clip found at the location
specified by url. This method is similar to getAudioClip() except that it
is static and can be executed without the need for an Applet object.

void play(URL url) If an audio clip is found at the location
specified byspecified by
url, the clip is played.
void play(URL url, String clipName) If an audio clip is found void play(URL url, String clipName) If an audio clip is found
at the location specified by url with the name specified by
clipName, the clip is played.
void resize(Dimension dim) Resizes the applet according to the
dimensions specified by dim. Dimension is a class stored inside
java.awt. It contains two integer fields: width and height.java.awt. It contains two integer fields: width and height.
void resize(int width, int height) Resizes the applet according to
the dimensions specified by width and height.
final void setStub(AppletStub stubObj) Makes stubObj the
stub for the applet. This method is used by the run-time system
and is not usually called by your applet. A stub is a small piece of and is not usually called by your applet. A stub is a small piece of
code that provides the linkage between your applet and the
browser.

void showStatus(String str) Displays str in the void showStatus(String str) Displays str in the
status window of the browser or applet viewer. If
the browser does not support a status window, the browser does not support a status window,
then no action takes place.
void start() Called by the browser when an void start() Called by the browser when an
applet should start (or resume) execution. It is
automatically called after init() when an applet automatically called after init() when an applet
first begins.
void stop() Called by the browser to suspend void stop() Called by the browser to suspend
execution of the applet. Once stopped, an applet
is restarted when the browser calls start().is restarted when the browser calls start().

Applet Architecture
An applet is a window-based program. As
such, its architecture is different from the such, its architecture is different from the
console-based Programs. Applets are event
driven. An applet resembles a set of driven. An applet resembles a set of
interrupt service routines. The user initiates
interaction with an applet—not the other interaction with an applet—not the other
way around.

An Applet Skeleton
All but the most trivial applets override a set of All but the most trivial applets override a set of
methods that provides the basic mechanism by
which the browser or applet viewer interfaces to which the browser or applet viewer interfaces to
the applet and controls its execution. Four of
these methods, init(), start(), stop(), and these methods, init(), start(), stop(), and
destroy(), apply to all applets and are defined
by Applet. Default implementations for all of by Applet. Default implementations for all of
these methods are provided. Applets do not need
to override those methods they do not use. to override those methods they do not use.
However, only very simple applets will not need
to define all of them.to define all of them.

AWT-based applets will also override theAWT-based applets will also override the
paint() method, which is defined by the AWT
Component class. This method is calledComponent class. This method is called
when the applet’s output must be redisplayed.
(Swing-based applets use a different mechanism (Swing-based applets use a different mechanism
to accomplish this task.)

These five methods can be assembled into the
skeleton shown here:
// An Applet skeleton.// An Applet skeleton.
import java.awt.*;
import java.applet.*;
/*/*
<applet code="AppletSkel" width=300 height=100>
</applet>
//
public class AppletSkel extends Applet {
// Called first.
public void init() {public void init() {
// initialization
}
/* Called second, after init(). Also called whenever/* Called second, after init(). Also called whenever
the applet is restarted. */
public void start() {
// start or resume execution// start or resume execution
}

// Called when the applet is stopped.
public void stop() {public void stop() {
// suspends execution
}

/* Called when applet is terminated. This is the last
method executed. */method executed. */
public void destroy() {
// perform shutdown activities
}
// Called when an applet's window must be restored.
public void paint(Graphics g) {public void paint(Graphics g) {
// redisplay contents of window
}
}}

Applet Initialization and Termination
It is important to understand the order in which the various methods shown in It is important to understand the order in which the various methods shown in
the skeleton
are called. When an applet begins, the following methods are called, in this
sequence:sequence:
1. init()
2. start()
3. paint()3. paint()
When an applet is terminated, the following sequence of method calls takes
place:
1. stop()
2. destroy()
Let’s look more closely at these methods.Let’s look more closely at these methods.
init()
The init() method is the first method to be called. This is where you should
initialize variables.initialize variables.

This method is called only once during the run time of
your applet.your applet.

start()

The start() method is called after init(). It is also called
to restart an applet after it has beento restart an applet after it has been

stopped. Whereas init() is called once—the first time an
applet is loaded—start() is called each time an applet’s applet is loaded—start() is called each time an applet’s
HTML document is displayed onscreen. So, if a user
leaves a web page and comes back, the applet resumes leaves a web page and comes back, the applet resumes
execution at start().

paint()
The paint() method is called each time your applet’s output must be redrawn. The paint() method is called each time your applet’s output must be redrawn.
This situation
can occur for several reasons. For example, the window in which the applet is
running mayrunning may
be overwritten by another window and then uncovered. Or the applet window
may be
minimized and then restored. paint() is also called when the applet begins minimized and then restored. paint() is also called when the applet begins
execution.
Whatever the cause, whenever the applet must redraw its output, paint() is
called. The paint()called. The paint()
method has one parameter of type Graphics. This parameter will contain the
graphics context,
which describes the graphics environment in which the applet is running. This which describes the graphics environment in which the applet is running. This
context is used
whenever output to the applet is required.

stop()

The stop() method is called when a web browser leaves the HTML document
containing the

applet—when it goes to another page, for example. When stop() is called, the applet—when it goes to another page, for example. When stop() is called, the
applet is probably running. You should use stop() to suspend threads that
don’t need to run when the

applet is not visible. You can restart them when start() is called if the user
returns to the page.

destroy()destroy()

The destroy() method is called when the environment determines that your
applet needs to

be removed completely from memory. At this point, you should free up any
resources the

applet may be using. The stop() method is always called before destroy().

Overriding update()
In some situations, your applet may need to override In some situations, your applet may need to override
another method defined by the AWT,called update().
This method is called when your applet has requested This method is called when your applet has requested
that a portion of its window be redrawn. The default
version of update() simply calls paint(). However, version of update() simply calls paint(). However,
you can override the update() method so that it
performs more subtle repainting. In general, overriding
update() is a specialized technique that is not update() is a specialized technique that is not
applicable to all applets.

• Simple Applet Display MethodsSimple Applet Display Methods

As we’ve mentioned, applets are displayed in a
window, and AWT-based applets use the AWT window, and AWT-based applets use the AWT
to perform input and output. to perform input and output.

• To output a string to an applet, use
drawString(), which is a member of the drawString(), which is a member of the
Graphics class. Typically, it is called from Graphics class. Typically, it is called from
within either update() or paint().

• It has the following general form:

• void drawString(String message, int x, int y)

Here, message is the string to be output beginning at
x,y. In a Java window, the upper-left corner is
location 0,0. The drawString() method will not
recognize newline characters. If you want to start a recognize newline characters. If you want to start a
line of text on another line, you must do so
manually, specifying the precise X,Y location where manually, specifying the precise X,Y location where
you want the line to begin.

To set the background color of an applet’s window, use setBackground(). To
set the foreground color (the color in which text is shown, for example), use set the foreground color (the color in which text is shown, for example), use
setForeground().These methods are defined by Component, and they have
the following general forms:the following general forms:

• void setBackground(Color newColor)

void setForeground(Color newColor)• void setForeground(Color newColor)

• Here, newColor specifies the new color. The class Color defines the constants
shown here that can be used to specify colors:shown here that can be used to specify colors:

• Color.black Color.magenta

• Color.blue Color.orange• Color.blue Color.orange

• Color.cyan Color.pink

Color.darkGray Color.red• Color.darkGray Color.red

• Color.gray Color.white• Color.gray Color.white

• Color.green Color.yellow

• Color.lightGray• Color.lightGray

• Uppercase versions of the constants are also defined.

• The following example sets the background color to green and the text color to • The following example sets the background color to green and the text color to
red:

• setBackground(Color.green);• setBackground(Color.green);

• setForeground(Color.red);

• A good place to set the foreground and background colors is in the init() method. • A good place to set the foreground and background colors is in the init() method.
Ofcourse, you can change these colors as often as necessary during the execution
of your applet.

• You can obtain the current settings for the • You can obtain the current settings for the
background and foreground colors by calling

• getBackground() and getForeground(),
respectively. They are also defined by respectively. They are also defined by
Component and are shown here:

• Color getBackground()

• Color getForeground()

• Here is a very simple applet that sets the
background color to cyan, the foreground background color to cyan, the foreground
color to red, and displays a message that
illustrates the order in which the init(), start(illustrates the order in which the init(), start(
), and paint() methods are called when an), and paint() methods are called when an
applet starts up:

/* A simple applet that sets the foreground and
background colors and outputs a string. */background colors and outputs a string. */

import java.awt.*;import java.awt.*;

import java.applet.*;

/*<applet code="Sample" width=300
height=50>height=50>

</applet>*/</applet>*/

public class Sample extends Applet{

String msg;

// set the foreground and background colors.

public void init() {public void init() {

setBackground(Color.cyan);setBackground(Color.cyan);

setForeground(Color.red);setForeground(Color.red);

msg = "Inside init() --";

}

// Initialize the string to be displayed.// Initialize the string to be displayed.

public void start() {public void start() {

msg += " Inside start() --";

}}

// Display msg in applet window.

public void paint(Graphics g) {

msg += " Inside paint().";

g.drawString(msg, 10, 30);g.drawString(msg, 10, 30);

}}

}

